skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yousefi, Midia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The goal of speech separation is to extract multiple speech sources from a single microphone recording. Recently, with the advancement of deep learning and availability of large datasets, speech separation has been formulated as a supervised learning problem. These approaches aim to learn discriminative patterns of speech, speakers, and background noise using a supervised learning algorithm, typically a deep neural network. A long-lasting problem in supervised speech separation is finding the correct label for each separated speech signal, referred to as label permutation ambiguity. Permutation ambiguity refers to the problem of determining the output-label assignment between the separated sources and the available single-speaker speech labels. Finding the best output-label assignment is required for calculation of separation error, which is later used for updating parameters of the model. Recently, Permutation Invariant Training (PIT) has been shown to be a promising solution in handling the label ambiguity problem. However, the overconfident choice of the output-label assignment by PIT results in a sub-optimal trained model. In this work, we propose a probabilistic optimization framework to address the inefficiency of PIT in finding the best output-label assignment. Our proposed method entitled trainable Softminimum PIT is then employed on the same Long-Short Term Memory (LSTM) architecture used in Permutation Invariant Training (PIT) speech separation method. The results of our experiments show that the proposed method outperforms conventional PIT speech separation significantly (p-value < 0.01) by +1dB in Signal to Distortion Ratio (SDR) and +1.5dB in Signal to Interference Ratio (SIR). 
    more » « less
  2. This study addresses the problem of single-channel Automatic Speech Recognition of a target speaker within an overlap speech scenario. In the proposed method, the hidden representations in the acoustic model are modulated by speaker auxiliary information to recognize only the desired speaker. Affine transformation layers are inserted into the acoustic model network to integrate speaker information with the acoustic features. The speaker conditioning process allows the acoustic model to perform computation in the context of target-speaker auxiliary information. The proposed speaker conditioning method is a general approach and can be applied to any acoustic model architecture. Here, we employ speaker conditioning on a ResNet acoustic model. Experiments on the WSJ corpus show that the proposed speaker conditioning method is an effective solution to fuse speaker auxiliary information with acoustic features for multi-speaker speech recognition, achieving +9% and +20% relative WER reduction for clean and overlap speech scenarios, respectively, compared to the original ResNet acoustic model baseline. 
    more » « less
  3. null (Ed.)
    Most current speech technology systems are designed to operate well even in the presence of multiple active speakers. However, most solutions assume that the number of co-current speakers is known. Unfortunately, this information might not always be available in real-world applications. In this study, we propose a real-time, single-channel attention-guided Convolutional Neural Network (CNN) to estimate the number of active speakers in overlapping speech. The proposed system extracts higher-level information from the speech spectral content using a CNN model. Next, the attention mechanism summarizes the extracted information into a compact feature vector without losing critical information. Finally, the active speakers are classified using a fully connected network. Experiments on simulated overlapping speech using WSJ corpus show that the attention solution is shown to improve the performance by almost 3% absolute over conventional temporal average pooling. The proposed Attention-guided CNN achieves 76.15% for both Weighted Accuracy and average Recall, and 75.80% Precision on speech segments as short as 20 frames (i.e., 200 ms). All the classification metrics exceed 92% for the attention-guided model in offline scenarios where the input signal is more than 100 frames long (i.e., 1s). 
    more » « less
  4. null (Ed.)